Explosive shock processing of Pr2Fe14B/ –Fe exchange-coupled nanocomposite bulk magnets
نویسندگان
چکیده
Explosive shock compaction was used to consolidate powders obtained from melt-spun Pr2Fe14B/ –Fe nanocomposite ribbons, to produce fully dense cylindrical compacts of 17–41-mm diameter and 120-mm length. Characterization of the compacts revealed refinement of the nanocomposite structure, with approximately 15 nm uniformly sized grains. The compact produced at a shock pressure of approximately 1 GPa maintained a high coercivity, and its remanent magnetization and maximum energy product were measured to be 0.98 T and 142 kJ/m, respectively. The compact produced at 4–7 GPa showed a decrease in magnetic properties while that made at 12 GPa showed a magnetic softening behavior. However, in both of these cases, a smooth hysteresis loop implying exchange coupling and a coercivity of 533 kA/m were fully recovered after heat treatment. The results illustrate that the explosive compaction followed by post-shock heat treatment can be used to fabricate exchange-coupled nanocomposite bulk magnets with optimized magnetic properties.
منابع مشابه
Grain size dependence of magnetic properties in shock synthesized bulk Pr2Fe14B/a-Fe nanocomposites
The structural and magnetic properties of the melt-spun Pr2Fe14B/a-Fe nanocomposite powders consolidated via shock-wave compression and subjected to postshock thermal treatment were investigated. Shock compression results in grain refinement, which leads to a reduction of an effective anisotropy and therefore an increase in the ferromagnetic exchange length, resulting in an enhanced exchange co...
متن کاملBulk SmCo5/a-Fe nanocomposite permanent magnets fabricated by mould-free Joule-heating compaction
Bulk SmCo5/a-Fe nanocomposite magnets have been prepared using a Joule-heating compaction technique. Nearly fully dense bulk magnets are obtained by compacting the milled powders under a pressure of 2 GPa at temperatures above 400 C. Structural analysis shows that the grain size of both the SmCo5 and the a-Fe phases is in the range of 10 to 15 nm when the compaction temperature is lower than 50...
متن کاملExchange-coupled nanoscale SmCo/NdFeB hybrid magnets
Nanoscale hybrid magnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel ‘‘in-one-pot’’ processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe ...
متن کاملRAPID COMMUNICATION Nanocomposite (Nd,Dy)(Fe,Co,Nb,B)5.5/α-Fe multilayer magnets with high performance
The structural and magnetic properties of rare-earth nanocomposite magnets of a (Nd,Dy)(Fe,Co,Nb,B)5.5 single layer and a (Nd,Dy)(Fe,Co,Nb,B)5.5/α-Fe multilayer prepared by sputtering and heat treatment have been investigated. Incomplete exchange coupling behaviour is observed in the Ti-buffered NdDyFeCoNbB + 40 wt%Fe single layer magnet. After annealing, the laminated nanostructure consisting ...
متن کاملAdvances in nanostructured permanent magnets research
This paper reviews recent developments in research in nanostructured permanent magnets (hard magnetic materials) with emphasis on bottom-up approaches to fabrication of hard/soft nanocomposite bulk magnets. Theoretical and experimental findings on the effects of soft phase and interface conditions on interphase exchange interactions are given. Synthesis techniques for hard magnetic nanoparticle...
متن کامل